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Abstract

Paraboloidal shells of revolution are commonly used in advanced aerospace, civil and telecommunication
structures, e.g., antennas, reflectors, mirrors, rocket fairings, nozzles, solar collectors, dome structures, etc.
A structronic shell system is defined as an elastic shell embedded, bonded or laminated with distributed
piezoelectric sensors and actuators and it is governed by either in situ or external control electronics. A
closed-loop control system of paraboloidal shell structronic system consists of distributed sensors/actuators
and controller coupled with an elastic paraboloidal shell. State equation for the paraboloidal shell
structronic system is derived and optimal linear quadratic state feedback control is implemented, such that
the ‘‘best’’ shell control performance with the least control cost can be achieved. The gain matrix is
estimated based on minimizing a performance criterion function. Optimal control effects are compared
with controlled responses with other non-optimal control parameters. Control effects of identical-sized
sensor/actuator patches at different locations are studied and compared. Modal control effects for different
natural modes are also investigated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Paraboloidal shells of revolution are commonly used in advanced aerospace, civil and
telecommunication structures, e.g., antennas, reflectors, mirrors, rocket fairings, nozzles, solar
collectors, dome structures, etc. A shell structronic system is defined as an elastic shell bonded,
embedded or laminated with active-material-based sensors and actuators governed by either in
situ or external control electronics. This study is to apply the linear quadratic (LQ) optimal state
feedback control to precision paraboloidal shell structronic systems and to evaluate modal control
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effects influenced by different sensor/actuator locations. The goal of optimal control is to seek for
the best closed-loop control performance at the least control cost. Although the optimal control
technique has been introduced to control applications for decades, its application to shell
vibration control, especially distributed structronic shell systems, is still not well explored.
Optimal control of distributed parameter systems with spatial and time discretization methods
was studied [1], as well as applications to beam and plate structures [2–5]. The dynamic and/or
elastic behavior of paraboloidal shells of revolution has been investigated for decades. Lin and
Lee [6] derived the mode shape functions and natural frequencies for paraboloidal shells of
revolution with free boundary based on the bending approximation. Wang and Lin [7] presented
the differential governing equations for the axisymmetric motion of paraboloidal shells of
revolution. However, difficulties for finding analytical solutions to the complicated equations of
motion limit the fully development and application of elastic paraboloidal shells of revolution.
Distributed sensing and control characteristics of structronic beam, plate, ring and shells have
been investigated over the years [8–12]. Distributed sensing behaviors and open-loop actuator
characteristics of structronic paraboloidal shell of revolution systems were recently investigated
[12–14]. In this study, the comprehensive dynamics and closed-loop optimal control performance,
with modal-dependent sensor/actuator location sensitivity, of paraboloidal structronic shells
(elastic shell coupled with distributed segmented sensors/actuators) are evaluated. Its advantages
are demonstrated by comparing the optimal control with the control based on a non-optimal (i.e.,
proportional and derivative) gain matrix at the same control gain cost.

2. A paraboloidal shell structronic system

The closed-loop active vibration control of paraboloidal shells of revolution structronic system
is accomplished by distributed sensors, a controller and distributed actuators, as shown in Fig. 1.
The piezoelectric sensor monitors the shell vibration state according to the direct piezoelectric
effect. The sensing signal is input to the controller and a control signal is generated based on the
sensing signal and the control algorithm. A high-voltage amplifier can be a part of the controller

ARTICLE IN PRESS

Fig. 1. A closed-loop control system for paraboloidal shell structronic system.

H.S. Tzou, J.H. Ding / Journal of Sound and Vibration 276 (2004) 273–291274



block. The control signal is then transmitted to distributed piezoelectric actuator patches to
counteract the shell vibration according to the converse piezoelectric effect.
The tri-orthogonal curvilinear co-ordinates are defined as a1 ¼ f—the meridional direction,

a2 ¼ c—the circumferential direction and a3—the transverse direction following the right-hand
rule (Fig. 1). R1 ¼ Rf is the radius of meridional curvature, R2 ¼ Rc is the radius of
circumferential curvature. The radii of curvature of paraboloidal shells of revolution are
Rc ¼ b=cosf and Rf ¼ b=cos3f: The Lam!e parameters are A1 ¼ Rf ¼ b=cos3f and A2 ¼
Rc sin f ¼ b sin f=cosf; where b ¼ a2=ð2cÞ; a is the maximum circumferential radius and c is the
meridian height (Fig. 1) [13]. State-space equations and optimal control are discussed next.

3. System equation in state space

The fundamental equations of motion for a shell of revolution are [8]:
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where Nij and Mij are the membrane forces and the bending moments; r is the shell mass density;
h is the thickness; qi and ui are, respectively, the excitation (loading) and displacement in the i
direction ði ¼ f;c; 3Þ; and the transverse shear effects Qi3 are

Qf3 ¼
1
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Substituting the radii of curvature and force/moment expressions into the fundamental equation
of motion and imposing the bending approximation yields the transverse oscillation equation of
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paraboloidal shells:
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where D is the bending stiffness. Furthermore, the modal expansion method [15] is used in the
optimal control and the distributed sensing/control analysis of paraboloidal shells [8]. Thus, the
modal expansion equation can be written as

uiðf;c; tÞ ¼
XN
m¼2

ZmðtÞUimðf;cÞ; ð7Þ
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where i ¼ f; c; 3 denote for the three co-ordinates; ZmðtÞ is the modal participating factor of the
mth mode; Uimðf;cÞ is the mth mode shape function of a free-floating paraboloidal shell [6]:

Ufm
¼ �Am sin f tanmf cosmc; ð8Þ

Ucm
¼ �Am tanmþ1f sinmc; ð9Þ

U3m ¼ Am tanm fðcos fþ m secfÞcosmc; ð10Þ

where Am is the modal amplitude. Note that for paraboloidal shells of revolution with free
boundary, the mode number m is the circumferential wave number starting from 2, based on the
bending approximation theory [6]. The modal equation can be written as [8]

.Zm þ 2Bmom ’Zm þ o2
mZm ¼ #FmðtÞ; ð11Þ

where Bm is the modal damping ratio, om is the mth natural frequency, #FmðtÞ is the modal force. In
practical implementation, the modal signal can be spectrally decomposed from the sensor signal
using band-pass filters or digital filters in conjunction with a fast Fourier transform (FFT). The
total closed-loop control system can be divided into a number of subsystems (modal loops)
designed for various natural modes. The final total control signal can be reconstructed by re-
composing all actuating signals from the subsystems [16]. Note that the spatial derivatives are
with respect to the mode shape functions and the temporal derivative is with respect to the modal
participating factor when both the mode shape functions and the modal expansion equation are
substituted into the transverse shell equation, (6). Accordingly, the shell transverse equation of
motion for the mth mode can be written as
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where q3m is the modal excitation. This equation is further transferred into the state-space, since
the state-space formulation is the fundamental in modern control techniques. Here, the modal
participating factor ZmðtÞ and its time derivative ’ZmðtÞ are chosen to be the system state variables
and the equation of motion is rewritten into the state-space form as ’x ¼ Axþ Buþ Ew and
y ¼ Cx; where x is the state-variable vector; u is the control input vector; w is external excitation
(disturbance); y is the output vector; A; B; C and E are known coefficient matrices related to the
system state, control input, system output and excitation input, respectively. The system state is
defined as

x ¼
x1

x2

( )
¼

ZmðtÞ

’ZmðtÞ

( )
: ð13Þ

ZmðtÞ represents the modal displacement of the shell and ’ZmðtÞ represents the modal velocity. The
system state equation is

’ZmðtÞ

.ZmðtÞ

( )
¼

A11 A12

A21 A22

" #
ZmðtÞ

’ZmðtÞ
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B2

( )
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E2

( )
q3mðtÞ: ð14Þ

The system output is chosen to be the sensing signal fs
m; so the output equation is

fs
m ¼ ½C1 C2�

ZmðtÞ

’ZmðtÞ

( )
¼ ½C1 0�

ZmðtÞ

’ZmðtÞ

( )
¼ C1ZmðtÞ: ð15Þ

A; B and E are the coefficient matrices determined by Eqs. (11) and (12); C can be determined by
the distributed sensing characteristic of free-boundary paraboloidal shell. The modal control force
#Fc
mðtÞ is the control input and the system state, i.e., the modal displacement and velocity, is the
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feedback signal in the closed-loop control system. For a linear control law,

#Fc
mðtÞ ¼ �GxðtÞ ¼ �GfZmðtÞ ’ZmðtÞg

t: ð16Þ

In practical applications, the control gain G is usually referred to the ratio between the control
signal and the sensing signal:

fa
m ¼ �G�ffs

m
’fs

mg
t; ð17Þ

where G� is the gain that relates the control signal to the sensing signal. The relation between G�

and the theoretical control gain G in Eq. (16) can be estimated based on the system equations and
the modal control force analysis. Note that the velocity signal can be measured directly by velocity
sensors, or it can be acquired by differentiating the displacement signal. In practice, to avoid the
differentiation process amplified noises, appropriate filter selection to keep the signal at a good
signal noise ratio (SNR) is required. Furthermore, the closed-loop system equation without
external excitation is simplified to ’x ¼ Ax� BGx ¼ Acx; where Ac is the closed-loop system state
coefficient matrix. When all system matrices are time-invariant, the solution is

xðtÞ ¼ eAcðt�t0Þxðt0Þ; ð18Þ

where ‘‘t’’ is any time instant after the initial time t0; xðt0Þ is the system initial state.

4. Optimal gain matrix

The criterion function of LQ optimal control is the integration of the quadratic form of the
state x plus a second quadratic form of the control u [17]:

J ¼
Z T

t0

½xtðtÞQðtÞxðtÞ þ utðtÞRuðtÞ� dt; ð19Þ

where x is the system state; Q is the state weighting matrix and R is the control weighting matrix
(both are positive symmetric matrices); t0 is the initial time, T is the final time; the superscript ‘‘t’’
denotes the matrix/vector transpose here. Weighting matrices are chosen based on the desired
control cost and final control performance. The optimal control gain is searched to minimize this
criterion function and is found by #G ¼ R�1Bt #M; where the matrix #M is the solution of the matrix
Riccati equation in the modern control theory [16]:

� ’#M ¼ #MAþ At #M� #MBR�1Bt #MþQ: ð20Þ

If the interval time goes to infinit ðT-NÞ and JN ¼
R
N

0 ðxtQxþ utRUÞ dt converges, the gain
matrix can be a constant and is called the optimal gain in the steady state, noted as

%G ¼ R�1Bt %M: ð21Þ

Then matrix %M is the solution to

0 ¼ %MAþ At %M� %MBR�1Bt %MþQ: ð22Þ

Note that %M is related to the optimal gain in the steady state optimal gain %G and #M is related to
the generic optimal gain #G: For the paraboloidal shell structronic system, the coefficient matrices
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are

A ¼
0 1

A21 A22

" #
; B ¼

0

1

" #
:

The state weighting matrix is chosen as

Q ¼
1 0

0 c2

" #
;

where c is a state weighting coefficient. The control weighting matrix R is now simplified to a
single parameter R as the control input is only #Fc

m; not a vector. %M is a symmetric matrix due to its
definition [16],
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m2 m3

" #
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Since m1 is not used in the gain calculation, it is not calculated. Thus, the optimal matrix %G is
determined by Eq. (20) as
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�: ð24Þ
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Application of the algorithm to the optimal control of paraboloidal shell structronic system is
demonstrated next.

5. Case studies

Optimal vibration control of a paraboloidal shell structronic system with free boundary is
studied; control sensitivities at various sensor/actuator locations are evaluated. The maximum
circumferential radius of the shell is a ¼ 1 m; height c ¼ 1 m and thickness h ¼ 0:1 m; shown in
Fig. 2. The shell is made of Plexiglas and the piezoelectric sensor/actuator patches are
polyvinylidene-fluoride (PVDF) films. The geometry and material properties are summarized in
Table 1. Three sensor/actuator locations are studied, i.e., Location 1: ðf;cÞ ¼ ð0:85; 0:1Þ;
Location 2: ðf;cÞ ¼ ð0:95; 0:1Þ and Location 3: ðf;cÞ ¼ ð1:05; 0:1Þ; all in radians. The
circumferential widths of the sensor/actuator patches at the three locations are c ¼ 0–0:2 rad
to exclude the influence of the circumferential wave and these three sensor/actuator patches are of
identical sizes, i.e., 0:03628 m2: The meridional co-ordinates of the patches at the three locations
are Location 1: f ¼ 0:76262–0:93738 rad; Location 2: f ¼ 0:9–1:0 rad and Location 3:
f ¼ 1:024565–1:075435 rad: Note that the 1st patch (Location 1) slightly overlaps the 2nd patch
(Location 2) in order to keep the same circumferential co-ordinate and thus, the same size.
Weighting matrices in the optimal control are chosen based on the control performance and the

desired control gain cost. (Too large feedback gain is impractical due to physical limitations,
although it might provide a better control performance.) The total gain cost of G� (G�

1 þ G�
2 ) is

assumed to be 300. In order to be compatible with the PD control with G� ¼ ½200; 100�; the total
gain cost for the optimal control gain %G is also chosen to be 300. (Note that the exact estimated
results from the optimal control algorithm are between 299 and 300 and the gain mentioned here
is referred to the ratio between the actuation signal and the sensing signal.) The control input
weighting coefficient R is chosen to be 1 for all the optimal control studied here and the state
weighting coefficient c is adjusted to achieve the desired gain cost. The optimal gain matrix %G

calculated from the optimal control algorithm indicates that the second entry %G2 is dominant, i.e.,
the gain cost is mostly assigned to the gain related to the second state variable—the derivative
component ’Zm (i.e., the modal velocity).
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Time-history responses of the center of the sensor/actuator patches at three shell locations are
investigated, to which an initial displacement 0:001 m with zero initial velocity is imposed. Note
the initial displacement and velocity need to be converted to the initial system state xðt0Þ ¼
fZðt0Þ ’Zðt0Þg

t in the modal domain. Initial modal damping ratio of free vibrations is assumed to be
0.002 and the modal amplitude Am is set unity. Numerical time steps of the time-history responses
are 1000. For comparison, time-histories of the optimal control, free vibration, and the state
feedback control using a non-optimal gain, i.e., G� ¼ ½200; 100�; of the (m ¼ 2–6) paraboloidal
shell modes at the three sensor/actuator locations are studied and only the (m ¼ 2–4) responses
are presented in Figs. 3–11. Localized dynamic and control characteristics contribute to the
differences among these time histories. Time histories of the free and control responses are further
processed to calculate their inferred equivalent modal damping ratios (m ¼ 2–6) at these three
sensor/actuator locations, resulting from the optimal control ð %GÞ and the PD control ðG�Þ: Fig. 12
shows the damping ratio variation for the five shell modes (m ¼ 2–6); Fig. 13 shows the damping
ratio variation at three sensor/actuator locations.
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Fig. 2. A paraboloidal shell with sensor/actuator patches at three locations.

Table 1

Geometry and material properties of the structronic paraboloidal shell system

Properties PVDF layer Plexiglas shell Units

Circumferential radius a ¼ 1 m

Meridional height c ¼ 1 m

Thickness hs ¼ ha ¼ 5
 10�4 h ¼ 0:10 m

Young’s modulus Yp ¼ 2:00
 109 Y ¼ 3:1028
 109 N=m2

Mass density rp ¼ 1800:0 r ¼ 1190:0 kg=m3

The Poisson ratio m ¼ 0:3
Bending stiffness D ¼ 2:8414
 105 Nm

Membrane stiffness K ¼ 3:4097
 108 Nm

Piezoelectric constants h31 ¼ 4:32
 108 V=m
m=m

d31 ¼ 2:3
 10�11 m=m
V=m

H.S. Tzou, J.H. Ding / Journal of Sound and Vibration 276 (2004) 273–291282



These time-history responses clearly reveal that the optimal control is superior to the PD
control. However, this control effect reduces at high natural modes, because the oscillation
amplitude is usually small; so are the sensing and control signals when control gains are fixed.
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Fig. 3. Control with sensor/actuator at Location 1, m ¼ 2: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
G� ¼ ½200; 100�; %G ¼ ½8:041272E–05; 299:647600�; time step ¼ 0:4 ms:
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Fig. 4. Control with sensor/actuator at Location 2, m ¼ 2: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
G� ¼ ½200; 100�; %G ¼ ½9:281180E–05; 299:290900�; time step ¼ 0:4 ms:
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Since the gain estimation involves a specific location and its meridional/circumferential angles of
the sensor/actuator patches, the time-history responses at these three locations reveal variations
of oscillation frequencies. The coefficients in the system equation and the meridional radii of
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Fig. 5. Control with sensor/actuator at Location 3, m ¼ 2: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration,
G� ¼ ½200; 100�; %G ¼ ½1:144451E–04; 299:959400�; time step ¼ 0:4 ms:
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Fig. 6. Control with sensor/actuator at Location 1, m ¼ 3: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
G� ¼ ½200; 100�; %G ¼ ½1:244259E–05; 299:959700�; time step ¼ 0:1 ms:
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Fig. 7. Control with sensor/actuator at Location 2, m ¼ 3: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
G� ¼ ½200; 100�; %G ¼ ½9:475585E–06; 299:426500�; time step ¼ 0:1 ms:
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Fig. 8. Control with sensor/actuator at Location 3, m ¼ 3: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
G� ¼ ½200; 100�; %G ¼ ½7:291031E–06; 299:678100�; time step ¼ 0:1 ms:
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curvature of paraboloidal shells change with respect to shell locations, and these changes amplify
the local characteristics resulting in frequency variations. Natural frequencies of the whole
structure are usually the global average effect of all locations on the non-constant radii
paraboloidal shell. These local/global phenomena were also observed in lab experiments [18].
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Fig. 9. Control with sensor/actuator at Location 1, m ¼ 4: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
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Fig. 10. Control with sensor/actuator at Location 2, m ¼ 4: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
G� ¼ ½200; 100�; %G ¼ ½3:194133E–06; 299:614500�; time step ¼ 0:5 ms:
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Fig. 11. Control with sensor/actuator at Location 3, m ¼ 4: 1, optimal control ð %GÞ; 2, control ðG�Þ; 3, free vibration;
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Fig. 12. Controlled damping ratio variation with the natural modes: —, optimal control ð %GÞ; - - -; control ðG�Þ:
(a) Location 1, (b) Location 2, (c) Location 3.
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These data suggest that the sensor/actuator patches near the free shell boundary generate better
control results at the same control gain cost. The sensor/actuator patches near the shell boundary
have larger sensing/actuating efficiency, besides the shell is also relatively flexible at the free
boundary and thus, it is easier to control. The control effects of lower modes are better than those
of higher modes at identical feedback gains; the controlled responses are almost unnoticeable at
higher modes in some cases, due to low sensing/control signals. It is noted that the controlled
damping ratio of the third mode ðm ¼ 3Þ is slightly larger than that of the second mode ðm ¼ 2Þ at
Location 3 in Fig. 12(c). Earlier studies show that there are two modal-influenced contradictory
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trends in the sensing signal and the open-loop control force characteristics of free-boundary
paraboloidal structronic shells. The sensing efficiency increases with the increase of natural
mode number, while the control efficiency decreases with the increase of mode number.
That suggests that the best closed-loop control effect appears at certain medium modes
rather than either the lowest or a much higher mode. A local frequency variation could
also contribute to the modal-dependent control effect. To exclude the influence of frequency
variation at different shell locations, the inferred damping ratios are calculated again using
the global natural frequencies and the results suggest that (1) the best control effect is now
the lowest mode m ¼ 2; (2) the damping ratio differences among the three locations decrease;
and (3) the influence of frequency variation to damping ratio is insignificant at the higher
modes [16].
Note that comparing the control effort based on the control energy cost can be an alternative

performance evaluation criterion, in which non-constant-cost tuned weightings can be used to
achieve specified performances or outcomes (i.e., controlled damping ratios). In this case, the
required energy to achieve similar outcomes would be modal dependent, since the in situ
segmented sensor generates less sensing signal at higher natural modes. Accordingly, to achieve a
similar outcome, the signal needs a high gain amplification (i.e., more energy) to reach the similar
actuator voltage and consequently a similar control effect. In this study, on the other hand, the
constant control-cost derived weightings are used and thus the actuator voltage varies, so the
controlled modal damping ratios are used for comparison among various sensor/actuator
locations and natural modes. The former is a goal oriented approach (i.e., comparing cost or
energy for a specified performance) and the latter is a cost oriented approach (i.e., comparing
controlled damping ratios at specified gain costs). Both approaches examine the control
effectiveness from two different perspectives.

6. Conclusions

A structronic shell system is defined as an elastic shell bonded, embedded or laminated with
active-material based sensors and actuators governed by either in situ or external control
electronics. This study focuses on the optimal vibration control of paraboloidal shell structronic
systems using the linear quadratic (LQ) optimal state feedback. A closed-loop paraboloidal shell
structronic system consisting of distributed sensors/actuators and controller coupled with the
elastic paraboloidal shell was defined first, followed by the state-space equation and the optimal
control equation based on the LQ state feedback control. Control effects of the same-size sensor/
actuator patches at different locations were studied and compared; modal control effects of
different shell natural modes were also investigated. The gain matrix was estimated based on
minimizing a performance criterion function. Optimal control effects were compared with
controlled responses with other non-optimal PD control parameters at the same control energy
cost.
Parametric studies demonstrate that the optimal control %G of paraboloidal shells with free

boundary is, indeed, superior to the PD control G� at the same control gain cost. Analysis of
sensor/actuator location sensitivity suggests that the sensor/actuator patches placed near the free
boundary rim provide the highest control effect of the free-floating paraboloidal shell. Its control
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effectiveness is obvious for low shell modes and the sensor/actuator located near the free shell rim.
This effectiveness becomes insignificant, regardless the control algorithms, for higher shell modes
or the sensor/actuator located near the shell pole. This implies that the closed-loop control system
for oscillations at higher modes is relatively insensitive to various gain matrices set at identical
total gain cost. Accordingly, many system and design parameters, e.g., geometry/material
properties, boundary conditions, sensor/actuator placements, feedback control algorithms,
dominating vibration modes, frequency performance of control electronics, instruments/devices,
etc., influencing the closed-loop control effect need to be considered in practical implementation
of the closed-loop control of precision paraboloidal shell structronic systems.
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